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Abstract

Self�avoiding random surfaces on a cubic lattice are studied by

extensive Monte Carlo sampling� The surfaces have empty boundary

and the topology of a ��sphere� An oct�tree data�structure allows to

obtain good statistics for surfaces whose plaquette number is almost an

order of magnitude greater than in previous investigations� Maximum

likelihood determinations of the critical plaquette fugacity� ���� and

entropic exponent� �� can be extrapolated to the estimates� � � � � ��

� � �� and � � � � �� � � �� The linear regression estimate for the radius of

gyration exponent is � � � � � � � � �� The results support a location of

the problem within the branched polymers universality class�

I� Introduction

Both lattice and continuum models of random surfaces �RS� have attracted
much attention in the recent literature� Among the many motivations for this
interest are connections with lattice gauge theories 
BDI���DI��� and possible
applications to problems in condensed matter physics� RS are geometrical
generalizations of random walks� which play a very fundamental role in �elds
like polymer physics� Indeed� from the onset of studies of RS� there has been
a natural tendency to treat their statistics within the framework of schemes
directly inspired by those used in polymer physics� On the other hand� RS
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models are expected to display a much richer variety of universality classes
than their random walk counterparts� so that application of schemes used for
random walk requires some caution�

At present� our understanding of RS models in �nite dimensions relies
on numerical investigations� mostly using Monte Carlo methods� As we�ve
already mentioned� analysis of results is more delicate than for random walks�
Another barrier to carrying out such investigations is the need to store a very
large amount of information in order to describe the con�guration of RS� This
information is much greater than that normally needed in walk problems of
comparable size� Thus� RS simulation is another �eld in which substantial
progress can be made only if e�cient data	structures and robust numerical
methods are introduced in such a way as to allow su�ciently fast and accurate
computations�

In this study we consider a model of RS on a �	dimensional cubic lattice�
i�e� the RS is constructed by gluing together elementary square plaquettes
of the lattice according to the following prescription� A surface S is given
by a set of jSj distinct plaquettes� Each plaquette is used only once to build
S� and at each of its four edges� it is connected to one and only one other
plaquette� A self	avoidance constraint is understood in the sense that not
only plaquettes but also their edges �which coincide with the bonds of the
�	d lattice� enter at most once in S� Corner overlaps are still allowed� We
must also specify the boundary conditions and the topology� Our surfaces
are closed� so that the boundary is �xed but null� It is known 
Sokal� that
convergence with �xed boundary conditions is much longer than with free
boundaries� We assume the topology to be that of a �	sphere �i�e� genus ���
thereby excluding handles� An excellent review of this problem is given in

Gl����

There are two quantities of primary interest to us� N�n�� the number of
possible surface con�gurations with jSj � n� and� R�n� the radius of gyration
with respect to the centroid of each con�guration� averaged over all N�n�
con�gurations with jSj � n� In counting� we assume that each con�guration
is equivalent to all others obtained by lattice translations� Thus� by �surface
con�guration� we imply an equivalence class of con�gurations which coincide
under such translations� On the basis of heuristic arguments� the following
asymptotic behaviors are expected at large n�

N�n� � n���n �
�

�



and
R�n� � n� ���

The existence of lim lnN�n could be established by generalizing a theorem of
Hammersley 
Ha�
� on self	avoiding walks to self	avoiding surfaces 
DFJ����
The exponent � has an entropic connotation� while � can be naturally inter	
preted as the reciprocal of the fractal� or capacity dimension for surfaces�

Very little exact information is available about self	avoiding RS �SARS�
models such as that described above� In particular� the determination of ��
� and � is essentially an open question� A property of self	avoiding surface
modes is that they most probably collapse into non	interacting branched
polymers in the limit of high dimensionality� implying � � 
�� and � �
��� 
DFJ���� Early real	space renormalization	group calculations and Flory
arguments� in the style of polymer statistics� suggested that the exponent �
of SARS at low dimensionality could be distinct from that of self	avoiding
branched polymers� although the two problems would share the same upper
critical dimension 
MS����

Sterling and Greensite 
SG��� performed the �rst Monte Carlo calcula	
tion in �	d for a SARS� They considered the same model described here and�
working in a grand canonical ensemble� estimated � � ��������� which would
seem to exclude� at least for �� the possibility of � � ��� and � � 
��� the
values expected for branched polymers in �	d 
PS�
�� On the other hand�
in an exact enumeration up to 
� plaquettes� Redner 
Re��� found values of
� and � which seemed compatible with those of branched polymers� �He�
however� did not apply restrictions on the type of boundaries nor on the
topology�� Further evidence for � � ��� and � � 
�� was obtained by Glaus
and Einstein 
GE���Gl��� with extensive Monte Carlo simulations� which
improved on the work of 
SG���� Concurrently� Karowski 
Ka��� presented
Monte Carlo results for our model suggesting that the exponent � could in	
deed be distinct from 
�� and instead have a value of the type �rst suggested
by Maritan and Stella 
MS���� Although Karowski�s approach seems less sys	
tematic and accurate than Glaus�s� he did test a domain of larger n� closer to
the asymptotic limit� His results thus cast some doubt on the identi�cation
of the model with branched polymers�

Because of this somewhat unsettled situation� we decided to undertake
a new Monte Carlo investigation of the model� based on a more e�cient
computational approach than previous ones� This paper presents the results
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of such a study� and includes a thorough discussion of the computational
strategy� with particular emphasis on the implementation of an oct	tree data	
structure� which is unfamiliar to most physicists� To our knowledge� oct	
trees have not yet been applied to this sort of problem� and we hope that
our application of them will convince readers of the utility of sparse data	
structures in complex problems of computational physics�

The rest of this paper is organized as follows� In the second section we out	
line our Monte Carlo method and illustrate how the oct	tree data	structure
works� When appropriate� we also draw comparisons with the methods used
in previous work� Section � is devoted to the presentation and analysis of
our results� In the last section� we give our conclusions�

II� Monte Carlo Algorithm and Oct�tree Data�structure

Our Monte Carlo procedure generates SARS on a cubic lattice in a grand
canonical ensemble at �xed plaquette fugacity �� Thus� the statistics of the
generated surfaces can be derived from a partition function of the form

Z��� �
X
S

jSjx�jSj �
X
n

nxN�n��n ���

where we have chosen x � � or � in this study� As in refs 
GE���Gl����
our algorithm is a re�nement of the Monte Carlo procedure �rst introduced
by Sterling and Greensite� Given a surface S� an attempt to modify it is
made by searching for elementary cubes of the lattice having at least one
face belonging to S� If such a cube is found� we reverse the status of each
of its � faces� regarding whether or not each belongs to the surface S� This
process leads to a new surface S

�

� which can be accepted only if it turns out
to obey the geometrical and topological constraints imposed on the model�
If the constraints are satis�ed� then the acceptance of the new surface is
subject to satisfaction of the usual Metropolis condition consistent with the
grand	canonical fugacity � in the partition function�

In 
SG� the search for cubes was made by sweeping through all those
contained in a 
� � 
� � 
� box� In subsequent studies 
G�EG�� the search
was restricted to the set of cubes with at least one face belonging to the
surface� In this way� surfaces �tting in a �������� box could be generated�
This box still imposes a rather severe �nite	size limitation� These approaches
are ine�cient in that a well	de�ned location in computer memory must be
reserved for each cube in the box� whether or not it actually touches the
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surface� We can� however� store information about the surface con�guration
using a sparse data	structure� the oct	tree� in which memory is only used for
those cubes which actually touch the surface� while all others can be ignored�
This procedure allows us to escape the restriction that surfaces �t in a �nite
box�

Before describing the data	structure explicitly� we comment on the way
in which our grand	canonical weight in the partition function ��� is actually
obtained� In 
G�EG�� each move of the surface was made by selecting ran	
domly among the cubes having faces in common with it� If we denote by kSk
the number of such cubes for a surface S� the random choice implies a factor

�kSk in the transition rate from S to any con�guration S

�

accessible from
S� Detailed balance then clearly implies that the grand canonical weight
for a surface S should contain a factor kSk� Here we prefer to proceed in
a way such that jSj� rather than kSk factors appear in the grand canonical
weight� as anticipated in eqn� ���� Thus� in our case the �rst random choice
is made within the set of all jSj elementary plaquettes of S� We then choose
one of the two cubes sharing this plaquette and perform the usual inversion
operation on it� Since this process allows the same cube to be chosen with
more than one plaquette choice� we must unbias the procedure so that each
distinct possible modi�cation of S has an equal a priori probability� Again�
calling S

�

the surface produced by inversion of the chosen cube� the move
S � S

�

actually has probability �
SS

� �jSj in the biased procedure� where
�
SS

� is the number of di�erent plaquettes in S the choice of which can lead
to the selection of the cube in question�

We can get rid of this bias if we slow down the rate by a factor of 
��SS�

by the usual Metropolis procedure of stopping the transition if a random
number chosen in 
�� 
� is greater than 
��SS� � In order to �nally obtain the
weight in eqn� ���� we have to apply jS

�

j��jSj � jS
�

j�� one further slowing
down process�

In fact� our calculation inserts two �lters� The �rst determined by the
ratio

jSj

jSj� jS �j
�

in all cases� and the second by

jS
�

jx

jSjx � jS �jx
�jS

�

j�jSj
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in case jS
�

j � jSj and otherwise�

jS
�

jx

jSjx � jS �jx

In this way we get a transition rate for an allowed move S � S
�

that is
of the form�

	�S � S
�

� �

�
A�S� S

�

�jS�jx� jS
�

j�jSj if jS
�

j � jSj
A�S� S

�

�jS
�

jx if jS
�

j � jSj
���

where A�S� S
�

� � A�S
�

� S�� Detailed balance then clearly implies that the
equilibrium probability of a surface jSj is proportional to jSjx�jSj� consistent
with eq� ���� The ability to vary x is important because by increasing x we
can boost the percentage of large surfaces produced in a Monte Carlo run at
any particular given subcritical � 
 ��� � �c�

In our runs� the probability of occurrence of a surface with jSj � n is

P �jSj � n� �
nx�nP�

l��
lxN�l��l

���

Unlike the simulations reported in 
DFJ���GE���Gl���� we do not keep one
plaquette of the surface �xed� In those simulations� the �xed plaquette served
to increase x e�ectively by one� Another increase of one compared to 
SG���
was achieved in refs� 
GE���Gl��� by sweeping only over the surface rather
than the whole box� �Note� however� that we do not allow the last remaining
cube of a surface to vanish� so that we always have n � ���

As has been mentioned� we have been able to perform simulations that
generate very large con�gurations� because we use a sparse data	structure�
the oct	tree� Oct	trees are a data	structure for storing information about �	d
space� Brie�y stated� the oct	tree data	structure represents a cube of arbi	
trary size� The same amount of computer memory can represent a physically
small cube as well as a large one� Part of each cube�s data	structure denotes
whether the cube is empty� full� or partially full� If the cube is empty or full�
there is nothing else to describe� If the cube is partially full� it is divided into
eight sub	cubes ��gure 
 ��� hence the term oct� Each of these may in turn be
either empty� full� or partially full� This description is continued recursively
until all partially full octs are described in terms of empty or full octs� or
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until some desired degree of resolution has been reached� This hierarchical
representation of a volume is an oct	tree� The �rst oct in the tree is called
the oct	root� For the purposes of our work� the term cube refers to a unit
cube of the lattice �i�e� an oct of the smallest resolution�� An example of a
four cube volume is shown in �gure 
 ��

The present use of oct	trees is quite di�erent from the typical one� The
ordinary implementation starts with a single oct that represents the total
working volume� The oct is divided as objects of importance are discovered
in the workspace� This is carried out recursively down to whatever resolution
is required� Our representation task is similar� but instead of splitting octs to
get more resolution� we double the linear dimension of octs when our volume
grows� The �nest level of resolution is �xed at the unit cube throughout
the calculation� but the working volume is not �xed� When a cube appears
outside of the oct	tree� we create a new root for the tree that is large enough
for the new object� The old root oct becomes one of the children of the
new root oct� When an oct�s eighth child is �lled� the oct is marked as full
and all storage previously used to store the children is released� Each parent
notices when its last child has become full and executes the same procedure�
This recursive process keeps the actual amount of storage in the oct	tree to
a minimum� An inverse process occurs when an oct�s only child is deleted�
The oct is marked empty and space reserved for children is released� This
is also executed recursively� as each parent notices when its last child has
become empty and releases space no longer used�

Functionally� all an oct consists of is pointers to children� For application
to SARS� we have augmented this with a parent pointer� a single coordinate
to identify one corner of the oct in space� and a count of the number of
children in the current oct� We have also augmented the oct structure so
that it stores any faces that lie on the surface� This is easily done with a
six	element bit map for the six possible faces on each cube�

One procedure is of special interest because it is the most heavily used and
illustrates a particularly nice feature of the oct	tree in physical simulations�
oct��nd is used to �nd the oct at a given coordinate� Since the height
of the oct tree is logarithmic with the size of the lattice� searching is very
e�cient� Starting at the root� the procedure compares the coordinate to the
midpoint in each direction� With three comparisons� the appropriate sub	
oct is located within which the x� y� z coordinate is guaranteed to lay� This
process is recursively repeated until we arrive at the correct cube� As we
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step down through the oct tree� the linear dimension of the working volume
is halved in each direction� Thus� the search time is

O�� log
�
�n�� � O�log

�
�n�� ���

	 a binary search� Thus� if it takes k steps to execute oct��nd in a �� �� �
lattice� it takes �k steps to do so in a ��� ��� �� lattice� and only ��k steps
in a 
� ���� ��� � 
� ���� ��� � 
� ���� ��� lattice�

III� Monte Carlo Results and Their Analysis

We performed extensive Monte Carlo runs on a Convex C
�� computer�
generating surfaces consistent with the equilibrium partition function ���
with x � � and x � �� Following 
GE���� we chose the value � � ����� This
is expected to be slightly below the actual critical value of the model� ����
which for 
GE��� was ������ It is crucial that we have � 
 �c to prevent
the surface from growing without bound� In earlier work 
SG���� a smaller
value of � �����
� was needed because of the stringent �nite	size limitation�
Karowski
Ka��� examined many values of � between ���� and �����

According to eqn� ������ at �xed value of � the Monte Carlo	generated
distribution of surface areas should peak at larger values of n as x increases�
This behavior is clear from the plots of distributions from our runs of 
��

Monte Carlo steps �MCS� for x � � and �� Thus� runs with x � � have the
advantage of sampling a relatively higher percentage of surfaces with high
jSj� Interestingly� this is also the disadvantage of using larger x� since the
mean con�guration size is larger� autocorrelation is a more serious problem�
We found that ������ MC steps between samples were needed� It is also
apparent from Figs� 
 that for relatively small n �less than about ���� there
are actually two distributions� there are far more surfaces with areas n that
are odd multiples of � than even multiples �and in fact none with jSj � �
or 
��� This observation is related to the fact that not every value of jSj is
possible �e�g� only �� 
�� and 
� can occur for small con�gurations�� This is
re�ected in the bimodal values in the plots of e�ective exponents vs� 
�nmin

discussed below�
Using the maximum likelihood method� we analyzed the distributions

depicted in Figs� 
 to extract estimates for � and �� Application of this
method to self	avoiding walks is discussed extensively by 
BS���� It was used
by 
GE���Gl��� for our SARS problem� In the simplest mode� one assumes
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the relation �
� is strictly satis�ed for n � nmin� Pursuant to this assumption�
one observes the �experimental� expectation values of the two quantities

O��S� � jSj��jSj � nmin� ���

and
O��S� � ln�jSj���jSj � nmin�� ���

where � is the Heaviside unit step function� The maximum likelihood esti	
mates of � and � are then obtained as solutions of the pair of equations


 O� �obs�
 O� �th ���


 O� �obs�
 O� �th �
��

where the left	hand sides are the computed Monte Carlo expectation values�
while on the right	hand sides we insert the theoretical expectation values
based on eqn� �
�� assumed valid for n � nmin


 O� �th�

P�
n�nmin

O��n�n���n�nP�
n�nmin

n���n�n
�

�

The numerical solution of this nonlinear system requires great care� For one
thing� the computed Monte Carlo expectation values require summing over
many terms of widely di�ering magnitudes� We found that to avoid roundo�
and truncation di�culties� it was necessary to use all terms on the left	hand
side of the equations for which simulation data were taken� and on the right	
hand side� use 
��� terms and sort the terms before summing� and compute
the sums in double precision� A more serious di�culty is presented by the
nonlinear equations themselves� Let F ��� �� be the di�erence between the
right and left	hand sides of Equations ��� and �
��� Figure xx is a plot of kFk
as a function of � and �� The �at �trough� running roughly north	east to
south	west contains the minimum of kFk� Along this trough� large changes
in ��� �� cause only small changes in kFk so that the minimum is di�cult
to locate� �This behavior is typical of the systems of equations arising form
the use of maximum likelihood for exponential families�� We carried out this
calculation in double precision� using the NAG routine SNSQSE�

We obtained estimates of � and � for both x � � and x � �� for many
di�erent values of nmin� In principle� the higher nmin� the closer the result
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should be to the correct asymptotic value� Indeed� corrections of the order
of 
�nmin can be expected� as well as possibly more dominant corrections to
scaling arising from deviations from the asymptotic behavior of relation �
��

In Table 
� we report our � and � determinations� We see that for values
of nmin up to ��� the determinations are reasonably consistent� For higher
values of nmin� poor statistics leads to more erratic behavior� Moreover� we
see that the exponents for nmin an odd multiple of two may di�er from those
with nmin an even multiple� We did a weighted least squares �t of ln�data�
linearized with weights data��� where the Fisher information matrix gives
the statistical � of each maximum likelihood data entry� Extrapolating over
the range of good statistics� as a function of 
�nmin � 
�
� to 
�nmin � � we
�nd� consistent with our assumptions�

��� �� � �
���� 
�����

There is� of course� additional systematic uncertainty due to the unknown
strength of corrections to scaling� We did not attempt to estimate these
corrections� but note from 
GE��� that they should not change the general
behavior in terms of 
�nmin� Since we have been able to go to much larger nmin

than previous workers� our values are presumably more nearly asymptotic�
The exponent � was more simply estimated by a linear regression method�

Figs� � show our Monte Carlo results for the mean square radius of gyration�
R�n�� of surfaces with jSj � n� Both for x � � and x � �� the log	log
plots become linear rapidly� indicating that a high degree of asymptoticity
has already been reached in both cases� The estimate of the asymptotic
slope was also done disregarding values for n � nmin A least	squares �t gives
estimates of � of ������xx and ���
��xx respectively� A �nal extrapolation
for � in the limit nmin �� gave� � � xx again an average of the results for
the two values of x�

IV� Concluding Remarks

The results discussed in Section III are obtained from statistics involving sur	
faces with areas nearly an order of magnitude larger than those considered
in refs� 
GE���Gl���� We could achieve this higher degree of asymptoticity
by removing the box constraint and by considering� in particular� the distri	
bution ���
� with x � �� Higher values of x� or ��s closer to the estimated
�c would have enriched the sampling of high n� but at the price of inconve	
niences� such as longer correlation times� Our choice of � and of x seemed
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a reasonable compromise in view of our computational capabilities� Only
one set of calculations have been reported that involve larger surfaces than
ours
Ka���� and we seriously question the statistical signi�cance of those re	
sults �cf� 
Gl����� In 
Ka��� determination of � was accomplished by using
very large surfaces generated with � close to the �c of ����
 previously de	
termined by 
SG���� which is considerably lower than our estimate of �����
for �c� Especially with such a small �� the sampling of very large surfaces �n
near ����� appears to us to be quite problematical�

Our estimates of � are clearly quite consistent with the value of Glaus

GE���Gl��� and strongly corroborate the conjecture that our self	avoiding
surfaces indeed have the same exponent� � � 
��� expected for branched
polymers in �	d� The determination of � was subject to greater uncertainty�
the value is less decisively in the universality class of branched polymers� and
we feel that a de�nitive conclusion on this issue has unfortunately not yet
been reached� even by our extensive analysis� Nonetheless� we believe our
determination of � represents an advance over 
GE���Gl��� in that we have
been able to include a substantially larger range of nmin and� hence� could
explore separate extrapolations of values that are odd and even multiples of
�� The latter series was neglected in 
GE���Gl����

As already stressed by Glaus� an additional important indicator of the
nature of SARS in the critical limit is the surface	to	volume ratio 
 jSj�V ��
Our data for this ratio seem to extrapolate� as nmin � �� to a value close
to ���� The fact that this ratio remains di�erent from zero indicates that
our surfaces enclose a region with fractal dimension not higher than 
���
The fact that the ratio is close to � is an indication that rami�ed tubular
con�gurations with tubes of minimal size presumably dominate in the RS
statistics� If each elementary cube on average gets about four plaquettes� the
critical activity for each cube is a number close to 
�� It is interesting to notice
that the estimated critical bond fugacity for branching trees �without loops�
on a hypercubic lattice is about ���� 
GS���� Even if a strict coincidence of
the two numbers is not to be expected� it seems to us that agreement in the
order of magnitude also supports the possible identi�cation�

Previous studies based on exact enumeration 
R��� and Monte Carlo

Gl���Gl��� gave evidence for exponents �at least �� very close to those we
found in our model� In particular� Redner found � close to 
�� in the case
of surfaces with unrestricted boundaries and topologies� We believe that
this apparent� and somewhat unexpected� independence of critical behavior







on the genus of the surfaces favors the idea that these surfaces are all in
the universality class of branched polymers� It is indeed known 
GS��� that
branching trees without loops have the same critical behavior as lattice ani	
mals� for which loops are allowed� In view of the above picture of our surfaces
as thinly rami�ed objects� the loops of lattice animals could correspond to
the possibility of forming handles� and thus of changing the genus of our
surfaces�

The results of this paper� particularly the strong indication that SARS
realize the critical behavior of branched polymers in the scaling limit� leads
to an obvious question� What are the requirements of a SARS model in
order that it represents a genuine fractal surface in the scaling limit rather
than a linear� even if highly rami�ed� object� We think that one way to
achieve di�erent critical behavior is to enrich the model by allowing a local
interaction with an e�ect analogous to an extrinsic curvature dependence in
the continuum� For example� an appropriate fugacity could be introduced to
control the number of links joining plaquettes not lying in the same plane� If
coplanar adjoining plaquettes are su�ciently favored over plaquettes joining
at right angles� it seems likely that a more compact structure than branched
polymers should appear in the simulations� Thus� one could possibly observe
interesting multicritical phenomena in this generalized model near the tran	
sition between SARS behavior as the fugacity is varied� The study of such
multicritical phenomena might well reveal new universality classes for the
generalized model�

A model� in which an e�ect similar to that of the above local interaction
is provided by the inclusion of Ising vacancies� has been recently discussed
in ref� 
MSS����
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